Received: April 25, 1983; accepted: June 15, 1983

REACTIONS OF PENTAFLUOROTELLURIUM HYPOHALITES WITH FLUOROOLEFINS

CARL J. SHACK and KARL O. CHRISTE Rocketdyne, a Division of Rockwell International Canoga Park, California 91304 (U.S.A.)

SUMMARY

Both pentafluorotellurium hypochlorite, TeF₅OCl, and hypofluorite, TeF₅OF, react with fluoroolefins to form TeF₅O- containing fluorocarbons, a new class of compounds. In the case of TeF₅OF, yields of the adducts are high (60-86%) but are lower (22-30%) with TeF₅OCl. In the latter case extensive chlorofluorination of the olefin occurs. Olefins studied include $CF_2=CF_2$, $CF_3CF=CF_2$, $CF_2=CFCl$, and perfluorocyclopentene. Details of the synthesis and characterization of these new fluorocarbons are presented.

INTRODUCTION

Examples of the addition of SF_5OX (X=F,Cl) to fluoroolefins to give SF_5O - containing fluorocarbons have been known for some time [1-4]. However in the case of the related SeF_5OX and TeF_5OX compounds, only one SeF_5OF -olefin adduct has been reported [5] and no SeF_5OC1 or TeF_5OC1 addition reactions have appeared. Recently we developed an improved synthesis of TeF_5OC1 [6] and discovered a synthetic route to the previously unknown TeF_5OF [7]. With those materials in hand it was of interest to study their reactions with fluoroclefins as a possible route to TeF_5O - substituted fluorocarbons. In this paper we report that TeF_5O - containing fluorocarbons are obtained from these addition reactions.

0022-1139/84/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

EXPERIMENTAL

Volatile materials were manipulated in a stainless steel vacuum line equipped with Teflon FEP U-traps. 316 stainless steel bellows-seal valves, and a Heise Bourdon tube-type gauge. The synthetic reactions employed here were usually conducted in stainless steel cylinders. Infrared spectra were recorded on a Perkin Elmer Model 283 spectrophotometer using cells equipped with AgCl, AgBr, or CsI windows. The ¹⁹F NMR spectra were recorded at 84.6 MHz on a Varian Model EM390 spectrometer with internal CFCl₃ as a standard with a negative chemical shift being upfield from CFCl₃.

The TeF₅OF employed herein was prepared from $Cs^{+}TeF_{5}O^{-}$ and FOSO₂F by reaction at -45^oC [7]. The TeF₅OCl was prepared by reacting TeF₅OH and ClOSO₂F at temperatures below and up to ambient [6]. Olefins employed were commercial materials (PCR Research Chemicals).

General prodedure: Typically a 30 ml stainless steel Hoke cylinder was cooled to -196° C and measured amounts of reactants were successively condensed into the cylinder from the vacuum line. The closed cylinder was allowed to slowly warm to ambient temperature in either a cold empty Dewar or one partially filled with dry ice. Since the TeF₅OCl-olefin reactions gave low yields under these conditions due to an uncontrollable side reaction, more moderate conditions were also examined for these systems. These included slower warming from -196° C in a dry ice block cooled to -196° C, slow addition of the olefin vapor to liquid TeF₅OCl held at -78° C, and the use of C₂F₅Cl as solvent at -78° C. The yields of TeF₅O- adducts remained at 20-30%. Numerical data for the synthesis reactions are shown in Table I.

After the desired reaction time, usually 1-2 days, the reactor was cooled to $-196^{\circ}C$ and any noncondensable gas present was removed. While rewarming to ambient temperature the condensable products were separated by fractional condensation in a series of U-traps on the vacuum line. The

TABLE I

REACTION PARAMETERS

	Trapping		Vap. Dens.	(g/mol)
Reactants (mmol)	Temp. ^o C	Products (% yield) ^a	Calc.	Found
TeF ₅ OF(1.42) CF ₂ =CF ₂ (2.30)	-112	TeF ₅ OCF ₂ CF ₃ (60) TeF ₆ ,(C ₂ F ₄) _n	357.6	355
TeF ₅ OF(0.65) CF ₃ CF=CF ₂ (0.81)	-95	TeF ₅ OC ₃ F ₇ (78) TeF ₆	407.6	404
TeF ₅ OF(1.65) c-C ₅ F ₈ (1.78)	- 45	TeF ₅ OC ₅ F ₉ (86) TeF ₆	469 . 6	467
TeF ₅ OF(0.41) CF ₂ -CFC1(0.47)	-112	TeF ₅ 0C ₂ F4C1(67) TeF ₆ , CF ₃ CF ₂ C1	374.1	371
TeF ₅ 0CL(2.58) CF ₂ =CF ₂ (3.07)	-112	teF₅OCF₂CF₂C1(30) CF ₃ CF ₂ C1(70),(TeF ₄ 0) _n	374.1	372
Ter ₅ oc1(2.59) Cr ₃ Cr=Cr ₂ (2.78)	- 95	TeF ₅ OCF ₂ CFC1CF ₃ (22) i-C ₃ F ₇ C1(73),(TeF ₄ 0) _n	424.1	426

^a Recovered olefin not included. Yield based on limiting reagent.

I

desired products were retained at the temperature shown in Table I, and a lower temperature trap and a higher temperature trap were used to remove by-products or unreacted materials. One or more repetitions of the fractionation procedure were used to complete the purification. Product identification was based on the observed material balance of the synthetic reaction, vapor density molecular weight determination, 19 F NMR spectroscopy, and infrared spectroscopy.

RESULTS AND DISCUSSION

The additions of TeF_5OF to fluoroolefins are described by the general equation.

$$TeF_5OF + > C=C < - TeF_5O-C-C-F$$

Yields in these reactions ranged from 60-86%. The products are all colorless liquids and gases which are thermally stable and can be recovered unchanged after 16 hours at 95°C in stainless steel vessels. Several months storage at ambient temperature has not resulted in any detectable decomposition. In addition to their identification on the basis of material balance and vapor density measurements, these new compounds have been spectroscopically characterized.

The most powerful tool in this regard is ¹⁹F NMR spectroscopy. The TeF₅O- group gives rise to AB₄ type NMR spectra owing to the magnetic inequivalence of the axial fluorine compared to the four basal fluorines. Thus the group might be better written as FTeF₄O-. The diverse appearance of the complex spectra possible for AB₄ systems has been illustrated for a number of SF₅- containing compounds [8]. However, all of the ¹⁹F NMR spectra of the new TeF₅OR_f compounds are similar to one another and the narrow range of chemical shifts and coupling constants for the TeF₅O- group is indicative of the close chemical similarity of these compounds. Table II provides a summary of the ¹⁹F NMR data.

J(HZ)					
	г185 F	-TeF,0	- CF,	GF,	
•	-49.7(A)	4- -40.0(t of B4)	2 -80.2(сm)		
J(Hz)	-179-	<u> </u>		Г!	
	F	TeF40	- CF ₂ - 78 ((ai +)	CF ₂ C1 -73_1(r)	
J(Hz)				9.1-	Г
-	F	- TeF ₄ 0	- cr,	сғ,	- CF 3
Ф	-53.9(A)	-42.6(t of B4)	-76.6(cm)	-1 <u>3</u> 2.8(t)	-84.6(t)
				9.5	Г
J(Hz)				- 6.9 ال-	Г
	F	- TeF40	-CF ₂	CFC1	- CF ₃
÷	-49.7(A)	-39.9(t of B4)	-71.7(cm)	-139.7(8)	-79.2(t,d)
J(Hz)		e.e_		ſ	
	Н	TeF ₄ 0	- CFC1	CF3	
¢	-49.0(A)	-38.3(d of B4)	-69.5(q1,q)	-85.8(d)	
			2.2	ſ	
) (Hz)		~	2.2	Г	
	F	- TeF _A 0	- CF	$(CF_3)_{3}$	
Ð	-53.4(A)	-41.8(bB4)	-132.7(bq1)	-84.3(8)	
) (Hz)	∿180-	Г			
·	F	- TeF ₄ 0	- C ₅ Fa		
Ð	-50.7(A)	-40.0(bB4)	-131.6(cm)		

area ratios measured for these resonances agreed with the given assignments.

Examination of the NMR values with respect to area ratios, chemical shifts, and multiplicities clearly revealed the presence of the TeF_5O - group in each compound. In addition these spectra also showed that when TeF_5OF reacted with unsymmetrical olefins both isomers possible from a non-regiospecific addition were formed.

$$TeF_{5}OF + CF_{3}CF=CF_{2} \longrightarrow TeF_{5}OCF_{2}CF_{2}CF_{3}(70) + TeF_{5}OCF(CF_{3})_{2}(30)$$
$$TeF_{5}OF + CF_{2}=CFC1 \longrightarrow TeF_{5}OCFC1CF_{3}(60) + TeF_{5}OCF_{2}CF_{2}CI(40)$$

The numbers in parentheses represent the per cent of that isomer in the mixture. Using appropriate computer programs [9]. it is possible to analyze and compute the second order spectra. This is illustrated in Figure 1 for one of the isomers from the TeF₅OF and C_3F_6 reaction. The B₄ part of the spectrum consists of two complex unsymmetrical doublets, one of which is well resolved. The well resolved doublet arises from the B_{L} part of the TeF₅O- group in the n-propyl isomer with the further splitting into triplets being due to the adjacent CF₂ group. Ignoring this CF₂-TeF₄ coupling, the basic B_{L} spectrum was computed and is shown in Figure 1 below the measured spectrum. Also illustrated is the observed and calculated A-portion of the spectrum. Two nine line patterns are present, the more intense one being due to the apical F of the more abundant TeF50CF2CF2CF2 isomer. An excellent match of calculated and measured peaks is again apparent. These data therefore confirm the presence and nature of the two isomeric products.

Nearly identical product ratios of normal to iso isomers have been reported for the related hypofluorites, $FOClO_3[10]$ and $CF_3OF[11]$ in reactions with $CF_3CF=CF_2$. This lack of a directed addition can be interpreted in terms of relatively non-polar O-F bonds and a free radical reaction mechanism. The high yields obtained for the TeF_5OF —fluoroolefin reactions are in contrast to those experienced with lighter element hypofluorite-olefin systems. Thus $CF_3OF[12]$, $SF_5OF[1]$, and $SeF_5OF[5]$ addition reactions are difficult to control and the latter gave no SeF_5O - containing compound with $CF_3CF=CF_2$.

Fig. 1. Observed ¹⁹F NMR spectrum of a mixture of $\text{TEF}_5\text{OCF}_2\text{CF}_2\text{CF}_2$ and $\text{TeF}_5\text{OCF}(\text{CF}_3)_2$ and the calculated A and B part of the n-propyl isomer. •Lines due to isopropyl isomer.

Since one of the characteristic reactions of covalent hypochlorites is their facile addition to olefins [13], it was anticipated that this reaction would also occur with TeF_5OC1 . This was realized but the yields of the adducts were relatively low (22-30%) and the main products were the result of chlorofluorination of the olefin as shown in the equations.

$$TeF_{5}OC1 + CF_{2}=CF_{2} \longrightarrow TeF_{5}OCF_{2}CF_{2}C1 + CF_{3}CF_{2}C1 + (TeF_{4}O)_{2}$$
$$TeF_{5}OC1 + CF_{3}CF=CF_{2} \longrightarrow TeF_{5}OCF_{2}CFC1CF_{3} + (CF_{3})_{2}CFC1 + (TeF_{4}O)_{2}$$

The lower thermal stability of TeF₅OCl and its easy decomposition to ClF and 'TeF₄O' can account for the observed products. Monomeric 'TeF₄O' is unstable and was observed in the form of its nonvolatile, liquid dimer [14]. Attempts to moderate the TeF₅OCl addition reaction by slow mixing of the starting materials at -78° C or the use of a solvent, C₂F₅Cl, at -78° were not successful.

With the unsymmetrical olefin, $CF_3CF=CF_2$, and TeF_5OC1 only one isomer was formed as shown by the NMR data in Table II. This behavior is comparable to the addition of $CloClO_3$ to $CF_3CF=CF_2[15]$ but differs from CF_3OC1 which gave both isomers [11].

The infrared spectra for the TeF₅OR_f compounds are given in Table III. In addition to the expected strong bands due to C-F and C-O stretching motions there are intense absorptions attributable to the TeF₅- group. In all cases strong bands are present at about 745,720, and 325 cm⁻¹ which are due to v_{as} TeF₄, vTeF' and δ TeF₄, respectively [7,16]. Their constant intensity and narrow frequency range serve as readily identifiable characteristics of TeF₅O- substituted fluorocarbons. Therefore the infrared spectra are wholly in accord with the formulation of these new materials as TeF₅OR_f moieties.

compounds ^a
TeF50Rf
of
spectra
Infrared

TABLE III

c-C₅F90TeF5 744 VB 1279 ms 1224 vs 1166 ms 988 vs 711 ms Intensity: s, strong; m, medium; w, weak; v, very; sh, shoulder. 319 ⁸ 1321 s $\frac{\text{TeF}_{5}\text{OCF}_{2}\text{CFC1}}{\text{CF}_{3}}\frac{\text{TeF}_{5}\text{OCF}(\text{CF}_{3})_{2}}{\text{CF}_{3}}$ L265 sh 1245 VB 1210 m 1170 s 322 в 1350 w 1320 w 1300 w 1145 s 1005 s 754 8 723 s 1297 ms 1241 vs 1136 ms 1268 s 1177 s 987 s 973 s 744 8 g 20 721 325 TeF50CFC1CF3^b 1245 vs 1105 vs .130 s 968 s 743 8 1320 w 708 m 322 s TeF₅0CF₂CF₂C1 1198 vs L182 vs 981 s 743 8 1310 w 1128 s 724 8 324 s ^aBand position cm⁻¹. TeF50CF2CF3 (1110 vs 1190 VB VasXF4 745 VB 1247 vs VXF' 722 8 328 s 6XF4 ر-م الم VC-F

^bDifference spectrum obtained by subtracting values for TeF $_{5}$ OCF $_{2}$ CF $_{2}$ Cl from a mixture of TeF50CF2CF2C1 and TeF50CFC1CF3.

CONCLUSIONS

This study has shown that reactions of $TeF_5OX(X=F,C1)$ with fluoroolefins are useful routes to the previously unknown class of TeF_5OR_f compounds. These materials are stable fluids comparable to the known SF_5O - and CF_3O - analogues.

ACKNOWLEDGEMENT

The authors gratefully acknowledge support for this work by the U.S. Air Force Office of Scientific Research under Contract F49620-81-C-0020.

REFERENCES

1	S. M. Williamson and G. H. Cady, Inorg. Chem., 1,673(1962).
2	R. D. Place and S. M. Williamson, J. Am. Chem. Soc.,
	90,2550(1968).
3	W. Maya, C. J. Schack, R. D. Wilson, and J. S. Muirhead,
	Tetrahedron Lett., 3247(1969).
4	L. R. Anderson, D. E. Young, D. E. Gould, R. Jurik-Hogan.
	D. Nuechterlein, and W. B. Fox, J. Org. Chem., 35,3730(1970).
5	J. E. Smith and G. H. Cady, Inorg. Chem., 9,1293(1970).
6	C. J. Schack and K. O. Christe, J. Fluorine Chem., 21,393
	(1982).
7	C. J. Schack, W. W. Wilson, and K. O. Christe, Inorg. Chem.
	22,18(1983).
8	C. I. Merrill, S. M. Williamson, G. H. Cady, and D. F.
	Eggers, Inorg. Chem., 1,215(1962).
9	D. J. Swalen, 'Computer Programs For Chemistry,' Vol. 1,
	F. Delos, Ed., W. A. Benjamin, New York, 1968.
10	C. J. Schack and K. O. Christe, Inorg. Chem., 18,2619(1979).
11	K. K. Johri and D. D. DesMarteau, J. Org. Chem., 48,242(1983).
12	M. Lustig and J. M. Shreeve, Adv. in Fluorine Chem.,
	7,175(1973).
13	C. J. Schack and K. O. Christe, Israel J. Chem., 17,20(1978).
14	H. Oberhammer and K. Seppelt, Inorg. Chem., 18,2226(1979).
15	C. J. Schack, D. Pilipovich, and J. F. Hon. Inorg. Chem.
	12,897(1973).
16	W. V. F. Brooks, M. Eshague, C. Lau, and J. Passmore,
	Can. J. Chem., 54,817(1976).
	—